
On the Migration of the Scientific Code Dyana from SMPs to Clusters of
PCs and on to the Grid

Michela Taufer1, Thomas Stricker1, Gérard Roos1, Peter G¨untert2

1 Department of Computer Science2 Institute for Molecular Biology and
Biophysics

ETH Zentrum ETH Hoenggerberg
CH-8092 Zurich, Switzerland CH-8092 Zurich, Switzerland

stricker,taufer@inf.ethz.ch guentert@mol.biol.ethz.ch

Abstract

Dyana is a molecular biology code used in the study
of infectious prion proteins. Like many other scientific
codes, Dyana was migrated successfully from vector su-
percomputers to a more cost-effective cluster of com-
modity PCs. A further migration to a widely distributed
grid computing platform looks very tempting because
many of these platforms promise the use of nearly free
compute-cycles on the Internet.

Not all codes are equally suited for all platforms. Even
embarrassingly parallel codes might require a signifi-
cant re-engineering effort for a migration from one plat-
form to another. A better understanding of the perfor-
mance characteristics of a code is required before a mi-
gration is attempted.

To address this problem, we present a systematic method
to study the viability of a code migration from one plat-
form to another. We construct an analytic performance
model of the application. We use the previous migration
from SMPs to commodity clusters of PCs to validate and
calibrate the model. Finally, we extrapolate the perfor-
mance of Dyana to new platforms including widely dis-
tributed computing on the grid and we suggest optimiza-
tions in the process of migration.

We demonstrate our method with the molecular biology
code Dyana. In particular, our general model predicts
that Dyana can efficiently use up to 42000 processors
with its current workload and is therefore well suited for
grid computing on the Internet.

Keywords: performance evaluation and modeling,
computation-intensive applications, widely distributed
supercomputing, migration of scientific codes, software
engineering, grid architectures.

1 Introduction

Rapid changes in technology lead to ever cheaper and
more powerful platforms for high performance comput-
ing. The computational power and the machine char-
acteristics found in supercomputers of yesterday are al-
ready available in high-end workstations today and will
be available in consumer devices in every household to-
morrow. This trend leads to the vision of a computa-
tional grid comprising millions of computing devices
worldwide, connected by the Internet.
The focus in high performance computing has shifted
from installations with maximal performance to instal-
lations with the better price-performance ratios. At
the same time, with the rapid expansion of the Inter-
net, many powerful PCs are networked by some fairly
good interconnects. In theory, these machines can sup-
ply thousands of Megaflops in compute performance to
computational scientists, if they are used during their
idle times and a mode of operation to deliver their spare
compute cycles is created. Besides early academic pro-
totypes [13, 14], several companies are developing mid-
dleware, toolkits and business models forwidely dis-
tributed computing on the Internet[1, 4]. In some cases
a newly proposed business model of “good cause com-
puting” suggests that users donate the spare compute cy-
cles to science.
There exists a fair number of useful computations that
were once brand-marked as embarrassingly parallel and
therefore uninteresting. Indeed, the performance char-
acteristics of those applications are quite boring if they
are run on high-end supercomputers. Still, those appli-
cations do computations that are highly useful to the ad-
vancement of science once they can be deployed more
widely and executed on ever cheaper resources. Fur-
thermore, a closer look to some examples may quickly
reveal that there are quite different levels of embarrass-
ingly parallel and that not all of those codes can be mi-

1

grated equally well to newer and cheaper platforms.
Code migrations from vectorizable codes to message
passing programs require some well-known transforma-
tions. In most cases, a successful migration involves
some significant re-engineering of the code. The con-
trol and data transfer primitives need to be changed from
multi-threading with shared memory primitives to calls
for message passing libraries or even back to calls han-
dling TCP/IP streams for widely distributed computing
on the Internet. Unfortunately, these transformations are
often done without a precise cost-benefit model in mind
and without a prior performance characterization of the
code.
In this paper, we propose a systematic way to check
the viability of a migration from clusters of PCs to a
framework of widely distributed computing well in ad-
vance and demonstrate it with the highly parallel molec-
ular biology code, Dyana [6]. Dyana computes three-
dimensional protein and nucleic acid structures by en-
ergy minimization in a simulated annealing process and
is highly valuable to the investigation of Prion related
diseases like the Bovine Spongiform Encephalopathy
(BSE), the mad cow disease. The planned use of Dyana
fits the idea of good cause computing and so it could
be a good candidate to exploit free compute resources
donated by Internet users.
For our investigation we rely on the performance data
gathered during a successfully completed migration
from SMPs to clusters of commodity PCs [11]. The per-
formance data of those experiments is used to calibrate
a detailed analytical model describing the precise per-
formance characteristics of the code (CPU dependency,
memory system usage, I/O requirements) for a variety
of node architectures and networks, like uni-processor
and dual-processor Pentium III nodes at 400, 800 and
1000 MHz. We also included several different memory
systems (i.e. PC motherboards) and one completely dif-
ferent architecture using a DEC Alpha based cluster with
a dedicated high speed interconnect [3]. Once our per-
formance model is calibrated, it extends to the planned
migration to widely distributed computing on the Inter-
net.
In Section 2 we take a closer look at the Dyana applica-
tion code and its functions. In Section 3 we discuss the
migration path and the different mechanisms for con-
trol and data transfers used on the different platforms.
In Section 4 we establish and calibrate the performance
model used to guide the migration of Dyana. This leads
to the discussion about viability and the expected perfor-
mance on the new platforms in Section 5.

2 The Protein Structure Calculation Code
Dyana

The application code Dyana was written at the Institute
of Molecular Biology and Biophysics of ETH Zurich

[6]. It calculates three-dimensional protein and nucleic
acid structures from distance constraints and torsion an-
gle constraints collected by nuclear magnetic resonance
(NMR) experiments [5]. The computation is based on
simulated annealing driven by the fast torsion angle dy-
namics (TAD) algorithm [7].
The simulated annealing is repeated several times, each
time starting with different random initial values of the
degrees of freedom, the torsion angles. This indepen-
dent generation of many conformers introduces a high
degree of inherent parallelism into the structure calcula-
tion with Dyana.
Dyana is written for a master-slave setting. The master
coordinates the parallel distributionand calculation. The
slaves run the simulations and return the results (i.e., the
resulting conformer) to the master that collects and ana-
lyzes them.

2.1 Task Parallelism in the SMP Version

The original version of Dyana runs on shared-memory
multiprocessors (SMPs). The parallelism in the com-
putation of the conformers has been reached by means
of multiple independent processes spawned by a UNIX
fork() system call. The master process creates the slave
processes calling fork() and implicitly sends the data to
them, according to the standard UNIX semantics for
process creation. Since no information is exchanged
during the computation of conformers, no additional
shared memory data structures are necessary.
Each slave computes exactly one conformer. Once a
slave has finished its computation, it sends the con-
former back to the master and exits. The slaves return
their results to the master through the file system.
The master is informed by the operating system upon
the termination of a slave (child-termination signal). Al-
though the master has to know when a slave exits, it does
not need to know which particular slave has finished.
A counter, which increases upon forking and decreases
upon receiving a child-termination signal tells the mas-
ter when a parallel part of the computation is finished.
Once all conformer simulations have been completed,
the master gathers the data about protein structures by
reading the corresponding files and continues with the
sequential execution of a subsequent evaluation part.
As long as there are more structures to compute, the
master spawns slaves. At the same time, the master en-
sures that the number of slaves does not exceed the num-
ber of available processors.

2.2 Managing Computation Steps and Tasks
with INCLAN

The Dyana software system provides a collection of
functions implementing the algorithms for NMR struc-
ture calculation. The user arranges these functions to
obtain a sequence of commands that computes a protein

2

structure from its experimental NMR data. This high
degree of flexibility has been achieved by integrating
INCLAN (INteractive Command LANguage) [5] into
Dyana. INCLAN is an interpreted command language,
offering control logics like if-then-else commands, loop
constructs, ordinary variable assignment and arithmetic
operations to control the search for the molecule struc-
ture with minimal energy. Therefore, all common strate-
gies for the generation of conformers (work-units or
tasks) can implemented in Dyana.
While the flexibility of INCLAN allows several different
tasking and scheduling models of the computation, we
used for our modeling uses a fairly rigid tasking model.
Each computation phase starts with an initial conformer
structure and generates a series of random variations
that are considered for energy minimization at this step.
Each variation of the conformer is handled by INCLAN
like a work queue in the master.

2.3 Characteristics of the SMP Version

The fork() system call used for task creation simplifies
the code implementation, since the entire address space
of the master is replicated to the slave. The process on
the slave only lives until its computation completes and
there is no need to reset some state or keep the state of
the master and the slaves consistent.
On the other hand, forking a process can become an ex-
pensive task unless shared memory with copy on write
is used. If we look at the fork() system call as an im-
plicit send command that transmits, the whole address
space of a process the potential cost becomes obvious.
Furthermore, the distributed operating systems on clus-
ter nodes do not provide the replication of an entire ad-
dress space across different machines and the fork() call
cannot be used for task creation. Therefore, the original
SMP version of Dyana needs some re-engineering to run
on clusters or widely distributed platforms.

3 Migration of the Code from SMPs to
Clusters and to Distributed Platforms

The migration of a code from one platform to another
could be done with a minimal amount of re-engineering.
For a migration of Dyana from SMPs to strongly inter-
connected cluster of PCs and further on to frameworks
for widely distributed computing, we separate the con-
trol mechanism (i.e. the task activation and task syn-
chronization) from the data transfer mechanism (i.e. the
exchange of the initial molecular state and the computed
3D structure at the end). Control and data transfers are
adapted separately to the new platform. The options
chosen for each platform in the migration path are shown
in Figure 1.
In the migration from an SMP to a cluster, we change
the control mechanisms from fork() calls implemented

CONTROL

DATA
TRANSFER

WIDELY
DISTRIBUTED
FRAMEWORKOF PCS

CLUSTERSMP
MACHINE

fork() MPI

MIGRATION

middleware
activation

file system calls file system calls file system calls

Figure 1. Control and data transfer mechanisms used
in the migration path from SMP machine, to cluster

of PCs and on to a framework for widely distributed

computing. While in the migration we re-engineer

the control mechanisms from fork() calls on SMPs,

to MPI commands on clusters and middleware library
calls on frameworks for widely distributed comput-

ing. We maintain the same data transfer mechanism

(file system calls) for all architectures.

in the command language INCLAN to MPI primitives
for task activation [12]. In frameworks for widely dis-
tributed computing, the task activation will be delegated
to the appropriate middleware primitive using the library
calls provided for this purpose. The additional synchro-
nization primitives for the coordination of the initial and
final data transfers are handled in a similar manner.

To manage the data transfers, we use the file system
calls provided by the underlying memory mapped files
on SMP machines, by the networked file system NFS for
clusters of PCs or by the calls of the toolkit in widely
distributed computing. Due to the small amount of data
communicated, this can be done with a reasonable ef-
ficiency on all platforms considered. We acknowledge
that there must be an appropriate security concept for
each platform. Controlling theaccess to the slave com-
puters and the integrity of data transfers is of a lesser
interest to a performance study. Good solutions have
been proposed in the past literature and we assume that
the problem is solved in the middleware packages men-
tioned in the introduction [1, 4].

For the migration to a widely distributed computing plat-
form, the tasking model of a typical Dyana computation
has to be reviewed critically. To provide the necessary
parallelism the generation of new conformers must be
done automatically and span more than one generation
of alternatives. As with all optimization problems, the
problem of getting trapped in local minima must be ad-
dressed carefully. The code needs to be adapted to a
proper workstealing paradigm as used in CILK [2].

The job queuing in the master and the work stealing
scheduler can easily handle different speeds of differ-
ent machines and the model can be extended to handle
different classes of machines. For the total execution
time only the total of compute power remains relevant,
provided that the speed of a machine justifies the cost of
networking it to a grid. Dyana computations are highly

3

fault tolerant by their nature. Since variations of the con-
formers are generated by a random generator the infre-
quent loss of a task can be tolerated easily.

4 Performance Model of Dyana

The purpose of our study is to get an idea whether Dyana
can run on on a more cost-effective platform in an effi-
cient way. To answer this question we design and val-
idate a simple but effective analytical model which lets
us roughly calculate the execution time for different ap-
plication parameters, different number of processors and
different platforms.

4.1 Model Design

As outlined in Section 2, the code Dyana simulates and
evaluates the different alternatives of three-dimensional
molecular structures, called conformers. For each of
them, Dyana performs:

� the creation of an initial structure with random val-
ues for the dihedral angles,

� the minimization of violations of the conforma-
tional constraints by simulating annealing using
torsion angle dynamic,

� the evaluation of the three dimensional structure re-
sulted by checking it against spectroscopic data.

For a run ofn conformers onp processors, the total ex-
ecution time,tdyana, can be split into three terms:

tdyana = tinit + tsiml + tcomm (1)

where:

� tinit is the time spent to create and initialize the pa-
rameters needed during the whole simulation,

� tsiml is the time used to run the simulations of an-
nealing using torsion angle dynamics,

� tcomm is the communication time during which the
several slaves communicate with the master and
vice versa.

Sincetinit is constant for the whole simulation and irrel-
evant if compared with the other time components, we
ignore its contribution.
The simulation is done in two phases. First, a random
structure is created, then the simulation of annealing
takes place.tsiml for n conformers onp processors is
given by:

tsiml=
ln

p

m�
tcreate structure+ tcon f siml

�
(2)

where:

� tcreate structure is the time spent for creating the ran-
dom structure,

� tcon f siml is the time spent minimizing the violations
of the conformational constraints by simulating an-
nealing.

Since tcon f siml is the most time consuming and
tcreate structureis less than 5% oftsiml, we consider:

tsiml � tcon f siml (3)

tcon f siml is given by:

tcon f siml =
FlOpcon f

FlPtspeed
(4)

where:

� FlOpcon f is the total amount of floating point op-
erations per conformer.FlOpcon f is mostly deter-
mined by the protein structure considered, but it
can also be a code factor and can depend on the
compiler technology. Table 1 reports the amount
of FlOpcon f, for both the molecules considered in
our study, the prion hPrP(R220K) and the ER2 pro-
teins, on Pentium and Alpha architectures. The dif-
ferent number of floating point operations on the
two platforms is related to the different compilers
used and the different standard libraries called for
transcendal functions.

Protein Architecture Compiler FlOpcon f

hPrP Pentium PGI Compiler 6.5 GFlOp
hPrP Alpha DEC Compiler 5.3 GFlOp
ER2 Pentium PGI Compiler 1.6 GFlOp
ER2 Alpha DEC Compiler 1.4 GFlOp

Table 1. Total number of observed floating point op-
erations (FlOpcon f) per conformer simulation for a

prion hPrP and a ER2 on Pentium and Alpha plat-

forms. The different number of floating point op-

eration on the two different platforms is due to the

different compilers.

� FlPtspeedis the amount of floating point operations
per second. It depends on architecture parameters
like CPU rate and memory characteristics.

In our model,FlPtspeedis approximated as:

FlPtspeed=
CPU clock rate
clocks per FlOp

(5)

In Formula 5, theCPU clock rate is the frequency
of the CPU. The clocks per floating point operation,
clocks per FlOp, are further related to the CPU fre-
quency and the memory characteristics:

clocks per FlOp = f (CPU speed;

memorycharacteristics)(6)

4

The CPU is characterized simply by its clock speed. De-
spite all architectural differences like super-scalar ex-
ecution, different handling of hazards and dependen-
cies interfering with the pipelines, we observed that on
most current microprocessors one floating point instruc-
tion can be successfully completed for every clock cy-
cle. To characterize the memory system, we use the Ex-
tended Copy Transfer Characterization (ECT) [10, 9].
Our model considers the average amount of cycles that
are spent by one floating point operation when it has to
fetch its data from memory. The total number of cy-
cles used in an application run is estimated based on a
detailed memory characterization (MBytes per second)
taken from the ECT micro-benchmarks. We consider
two different kind of memory accesses: contiguous and
non-contiguous/stridedaccess. We calculate the coeffi-
cients of the approximation by a linear regression model:

clocks per FlOp= aα+bβ+cγ (7)

In Formula 7,α is the amount of cycles needed for a
floating point operation without any memoryaccess,β
is the amount of cycles needed for a floating point op-
eration which has to load a word from memory continu-
ously, whileγ is the amount of cycles needed for a float-
ing point operation which loads a word from memory
using strided access. Table 2 shows the values ofα, β, γ
estimated using the ECT model for the several platforms
considered.

CPU Type α β γ
CPUs CPUs
1 2 1 2

Pentium III 933 MHz 1 13 18 33 75
Pentium III 800 MHz 1 17 21 26 50
Pentium II 400 MHz 1 11 14 29 40
DEC Alpha 667 MHz 1 7 7 34 34

Table 2. Values of α, β and γ estimated using the

ECT memory system model for Pentium and Alpha

platforms.

The parametersa, b and c characterize Dyana and are
chosen using the least-squares criterion [8] for all differ-
ent machines, molecular structures and runs of Dyana.
So on average,a represents the amount of operations
which do not need any memory load,b is the number of
floating point operations which access memory blocks
continuously, whilec is the amount whichaccess the
memory non-continuously.
At the end of each conformer simulation, the slaves
send the computed three-dimensional molecular struc-
ture back to the master writing the data using file system
calls and remain ready for a new simulation. In case of
symmetrical networks, the time for the communication
between master and slaves,tcommcon f, depends on:

� the size of the data,sizedata, that is exchanged,

� the number of processors,p,

� the bandwidth,bandwidthmaster, that the master
can sustain serving many slaves and

� the bandwidth,bandwidthslave, that a single slave
handle.

tcommcon f = max
� sizedata

bandwidthslave
;

p � sizedata

bandwidthmaster

�

(8)
The time for the whole communication becomes:

tcomm =
l n

p

m
tcomm con f =

l n
p

m
max

� sizedata

bandwidthslave
;

p sizedata

bandwidthmaster

�
(9)

On strongly interconnected cluster platforms which nor-
mally consists of a small number of nodes connected
and a large bandwidth (1000BaseT), the communication
does not play any relevant role for the overall perfor-
mance. On frameworks for widely distributed comput-
ing, it is either the available bandwidth of the slaves or
the bandwidth of the master which limits the scalabil-
ity of a parallel computation. The analytical model be-
comes:

tdyana =
l n

p

m� FlOpcon f

CPU clock rate
(aα+bβ+cγ) +

max
� sizedata

bandwidthslave
;

p sizedata

bandwidthmaster

��

(10)

The model can easily be adapted for asymmetric net-
works as found in home-computers connected to the In-
ternet by asymmetric ADSL or CableTV links.

4.2 Model Validation

Since we have a running implementation of Dyana for
SMPs and clusters, we can use application measure-
ments as the most reliable way to validate our analytical
model. We compare the execution time measured with
the application behavior computed using the analytical
model for a few selected scenarios and for different kind
of molecular structures.
Figure 2a and Figure 2b compare respectively the execu-
tion time versus the estimated time for the Prion protein
on a Pentium II cluster (400MHz) with one active pro-
cessor per node (single processor) and two active pro-
cessors per node (dual processors). Figure 3a and Fig-
ure 3b display the same comparisons with the ER2 pro-
tein. The graphs point out a good level ofaccuracy of
the model. Figure 4 compares the execution time versus
the estimated time for the Prion on a cluster of 16 Alpha
(667Mzh) dual processors.

5

1 2 4 8 16
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

tim
e

(s
ec

)

number of slaves

measured time estimated time

2 4 8 16 32
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

tim
e

(s
ec

)

number of slaves

Measured time vs. estimated time on Pentium II (400 MHz)
(PRION, 128 conformers, single processor)

Measured time vs. estimated time on Pentium II (400 MHz)
(PRION, 128 conformers, dual processors)

(a) (b)

Figure 2. Comparison of the measured execution time to the modeled execution time of Dyana for a Prion protein on a

cluster of dual Pentium II (400MHz). A different number of slaves with one active processor per node (a) and with two

active processors per node (b) is considered.

1 2 4 8 16
0

500

1000

1500

2000

2500

tim
e

(s
ec

)

number of slaves

measured time estimated time

2 4 8 16 32
0

500

1000

1500

2000

2500

tim
e

(s
ec

)

number of slaves

Measured time vs. estimated time on Pentium II (400 MHz)
(ER2, 128 conformers, single processor)

Measured time vs. estimated time on Pentium II (400 MHz)
(ER2, 128 conformers, dual processors)

(a) (b)

Figure 3. Comparison of the measured execution time to the modeled execution time of Dyana for a ER2 protein on a

cluster of dual Pentium II (400MHz). A different number of slaves with one active processor per node (a) and with two

active processors per node (b) is considered.

5 Performance Prediction of Dyana on
Different Platforms

In the past sections we established and calibrated an an-
alytical performance model for Dyana based on the mi-
gration from SMP platforms to cluster of PCs. In this
section we will use our model to extrapolate the perfor-
mance of Dyana to different compute platforms at both
ends of the performance spectrum:

� a framework for widely distributed computing
(cluster of 400 MHz Pentium Celeron Processors)
interconnected by a highly heterogeneous network
connecting home users with standard modems to a
master with a high bandwidth connection,

� a strongly interconnected high-end cluster whose
nodes, all 1 GHz Pentium III processors, are
interconnected by high bandwidth networks
(1000BaseT).

In Dyana, the master performs only short calculations
when it receives a request by a slave. The amount of the
data exchanged between master and slave depends on
the molecule but in general it is not large. For a typical
Prion protein, the communication size, including all the
synchronization signals, is less than 20 KBytes.

6

Measured time vs. estimated time on Alpha Cluster (667 MHz)
(PRION, 128 conformers, dual processors)

2 4 8 16 32
0

500

1000

1500

2000

2500

tim
e

(s
ec

)

number of slaves

measured time estimated time

Figure 4. Comparison of the measured execution time
to the modeled execution time of Dyana for the Prion

protein on a cluster of DEC Alpha (667MHz) for differ-

ent number of slaves with two active processors per

node.

5.1 Performance Prediction of Dyana in
Widely Distributed Computing

Although Dyana does not require much computation of
the master when it receives a service request, this task
may become a bottleneck as soon as the master can not
cope with an exceptionally large amount of requests it
receives. This is not an unrealistic scenario when thou-
sands of computers on the Internet become involved.
With our simple model and the profiling data of the ap-
plication on clusters, we can try to estimate this cross-
over point when a master can no longer serve the amount
of requests received without causing a limitation in per-
formance.
On frameworks for widely distributed computing,
the master normally resides on a strongly intercon-
nected platform on the back-bone using fully switched
100BaseT or 1000BaseT Ethernet, while the slaves re-
main connected to this framework by voice modems,
ISDN or ADSL connection, at a speed of just
7 KBytes/sec (worst case). With these numbers and our
model, we can estimate the communication time:

tcomm=
ln

p

m
max

� sizedata

bandwidthslave
;

p � sizedata

bandwidthmaster

�

(11)
With communication time and duty cycle of the master
(master computation time over slave computation time),
we can easily derive the maximal number of slaves a
single master can handle.

p> pmax=
bandwidthmaster

bandwidthslave
� 1500 (12)

In the scenario in which the bandwidth of the slaves lim-
its the communication, a request needs approximately

3 seconds to be served:

tcomm con f =
sizedata

bandwidthslave
� 3 sec (13)

According to our prediction for the case of a slave with
a low-cost node (Pentium II 400 MHz), the computation
of a conformer required an average 85 seconds. During
this time, the master can serve other requests and the
duty cycle of Dyana becomes:

duty cycle=
tcon f siml

tcomm con f
�

85
3

� 28 (14)

The total number of slaves per master that can be served
on this platform is related to the maximum number of
slaves which can be served at the same time,pmax, and
the duty cycle of the application,duty cycle. In a situ-
ation of perfect load balancing, the maximal number of
slaves becomes approximately:

pmax�duty cycle= 1500�28� 42000 (15)

For a good scalability beyond this point, the master must
be replicated as well adding a second level of paralleliza-
tion. Multiple masters can be used to do the communi-
cation phases and prevent related bottlenecks on compu-
tation involving more computers.
The parameter values observed in Dyana and similar
codes indicate that the typical network latency of a few
hundreds milliseconds in a grid is far less than the com-
putation time of a task and even an order of magnitude
less than the total communication time required for the
execution of the task. The computations are therefore
communication bandwidth and not latency limited.
Figure 5a shows the total time for the computation of
256 conformers while Figure 5b shows the prediction
of the conformer number per hour for the Prion protein
on a cluster of Pentium II 400 MHz Celeron. A few
hundred processors are still a small number for use in
widely distributed computing and for the final paper we
would like to gather more numbers and extrapolate our
predictions more aggressively to 100’000 nodes.

5.2 Performance Prediction of Dyana on
Strongly Interconnected High-End Clus-
ters

For the verification of the model we also consider new
platforms with higher performance than the current Be-
owulf clusters. On a strongly interconnected high-end
cluster, the communication rate requirements of Dyana
are easily met. Therefore, the communication time can
be assumed zero. Figure 6a shows the total time for
the computation of 256 conformers for a strongly in-
terconnected high-end cluster whose nodes, Pentium III
1 GHz, are interconnected by high bandwidth networks,
while Figure 6b show the prediction of the number of
conformers per hour.

7

1 2 4 8 16 32 64 128 256
0

4000

8000

12000

16000

20000

24000

tim
e

(s
ec

)

number of slaves

400 MHz

1 2 4 8 16 32 64 128 256
30

100

1000

10000

30000

nu
m

be
r

of
 c

on
fo

rm
er

s
/ h

ou
r

number of slaves

400 MHz

(a) (b)

Predicted time on a framework for widely
distributed computing
(PRION, 256 conformers, 400 MHz)

Predicted number of conformers per hour on a
framework for widely distributed computing
(PRION, 400 MHz)

Figure 5. Predicted execution time of Dyana for the computation of 256 conformers (a) and predicted compute rate in

conformers per hour (b) of Dyana for a Prion protein on a framework for widely distributed computing. The predictions

are computed by our analytical model from basic performance characteristics of the new target platform.

Predicted time on a strongly
interconnected high-end cluster
(PRION, 256 conformers, 1 GHz)

Predicted number of conformers per hour on a
strongly interconnected high-end cluster
(PRION, 1 GHz)

1 2 4 8 16 32 64 128 256
0

5000

10000

15000

20000

25000

tim
e

(s
ec

)

number of slaves

1 GHz

1 2 4 8 16 32 64 128 256
100

1000

10000

100000
nu

m
be

r
of

 c
on

fo
rm

er
s

/ h
ou

r

number of slaves

1 GHz

(a) (b)

Figure 6. Predicted execution time of Dyana for the computation of 256 conformers (a) and predicted compute rate in

conformers per hour (b) of Dyana for a Prion protein on a strongly interconnected high-end cluster. The predictions

are computed by our analytical model from basic performance characteristics of the new target platform.

6 Extending our Approach to other Codes
and Future Work

An entire class of scientific codes (OPAL, CHARMM,
GAMESS, AMBER) can distribute their work-units
among different processors in a cluster or on the grid set-
ting. Due to a similar master-slave setting, some compu-
tation intensive phases are followed by a communication
phase.
In addition to Dyana, we did also look at CHARMM
(Chemistry at HARvard Macromolecular Mechanics).
The resource usage of CHARMM at the architectural
and the operating system level are highly similar to
Dyana. Therefore, the modeling of CHARMM can be
achieved by the set of formulas given in this paper for
modeling the performance of Dyana. The application
parameters that determine the clock-per-floating-point-
operation (i.e. a specialization of better known CPI) are

very similar. So the usage of the floating point units
and of the memory system in CHARMM and DYANA
are very alike. The total number of floating point op-
erations per work-unit is fairly different, but can easily
be determined by benchmarking the sequential version
of the code. The amount of communication to start and
complete a work-unit can be characterize in the param-
eters used in our model. Therefore, the same model can
be used to characterize the code and predict the perfor-
mance of CHARMM for grid environments. A precise
characterization of CHARMM is given in [15].

Despite the highly positive outlook given by our pre-
diction for Dyana on a grid platform, we recently fo-
cused our attention and our engineering capacities to the
migration of CHARMM to some well known grid plat-
forms for highly distributed computation [1, 4].

8

7 Conclusion

A successful migration of the molecular dynamics code
Dyana from SMP workstations to a more cost-effective
cluster of commodity PCs drastically increases the com-
pute resources available to biologists for this kind of cal-
culations. Because of a clean separation of control and
data transfer, the amount of code re-engineering needed
for the migration is kept at a minimum. While we read-
ily adapt the control transfer mechanism to the best task-
ing paradigm for a particular platform, we left all bulk
data transfers with file system calls, using the appropri-
ate underlying mechanism of shared memory in SMPs,
NFS in clusters or the corresponding toolkit functions in
grid computing environments. This programming short-
cut is properly justified by the small impact of the data
transfers on the overall performance of Dyana.
To further increase the number of computers available
to Dyana, we study the viability of a next migration step
from clusters to some newly developed frameworks for
widely distributed grid computing on the Internet. The
effectiveness of such a migration is studied with an ana-
lytic performance model of Dyana. The model predicts
performance on a broad range of different computing
platforms including SMP servers, clusters of PCs and
novel infrastructures for widely distributed computing
on the grid. The model incorporates application param-
eters like protein size and machine parameters like CPU
clock frequency, memory system type or network speed
and the degree of parallelism used. The parameters are
properly fitted to different experiments involving 1 to 32
processors as 32bit Intel Pentium IIIs and 64bit Compaq
Alphas with clock rates between 400 MHz to 1 GHz.
The use of the model is calibrated and validated during
a previous migration from SMPs to cluster of PCs. The
model reaches an excellent fit with a high accuracy in
its predictions on average and a worst case of just of
19% deviation from experimental data. The per proces-
sor performance range considered is 82 MFlop/s to 180
MFlop/s per processor. The aggregate performance in
our most parallel system reaches up to 4.9 GFlop/s.
After calibration, we use our performance model to ex-
trapolate the application runs to a widely distributed
computing infrastructure incorporating thousands of
processors on the Internet and are predicting excellent
scalability up to approximately 42000 processors. At
this number of slaves the communication to the master
becomes the bottleneck. Replication of the master in a
multilevel hierarchical setup can resolve this.
The performance model of this study indicates that
Dyana can be successfully migrated to frameworks for
widely distributed systems on the Internet and is, there-
fore, well suitable for grid computing. Since Dyana is
crucial to the ongoing research of Prion infections like
BSE, the code would be an ideal candidate for a “good
cause” computing campaign.

References

[1] D. Anderson and et al. United Devices - Building
the worlds largest computer, one computer at a time.
http://www.ud.com/.

[2] R. Blumofe, C. Joerg, B. Kuszmaul, C. Leisserson,
K. Randall, and Y. Zhou. Cilk: An efficient multi-
threaded runtime system. InProc. 5th ACM Symp. on
Principles and Practice of Parallel Prog. (PPoPP), pages
207–216, Santa Barbara, July 1995. ACM.

[3] S. Brauss, M. Lienhard, J. Nemecek, A. Gunzinger, N¨af
M., M. Frey, M. Heimlicher, A. Huber, P. M¨uller, and
R. Paul. An Efficient Communication Architecture for
Commodity Supercomputers. InProceeding of the SC99
Conference, Portland, Oregon, USA, Nov 13-19 1999.

[4] A. Chien and et. al. Entropia - High Performance Internet
Computing. http://www.entropia.com.

[5] P. Güntert. Structure calculation of biological macro-
molecules from NMR data. Quart. Rev. Biophys.,
31:145–237, 1998.

[6] P. Güntert, C. Mumenthaler, and K. W¨uthrich. Torsion
angle dynamics for NMR structure calculation with the
new program Dyana.J. Mol. Biol., 273:283–298, 1997.

[7] A. Jain, N. Vaidehi, and G. Rodriguez. A fast recursive
algorithm for molecular dynamics simulation.J. Comp.
Phys., 106:258–268, 1993.

[8] R. Jain.The Art of Computer Systems Performance Anal-
ysis. Wiley Professional Computing, 1996.

[9] Ch. Kurmann and T. Stricker. ECT -
Extended Copy Transfer Characterization.
http://www.cs.inf.ethz.ch/CoPs/ECT/.

[10] Ch. Kurmann and T. Stricker. Characterizing memory
system performance for local and remote accesses in
high-end SMPs, low-end SMPs and clusters of SMPs.
In 7th Workshop on Scalable Memory Multiprocessors
ACM Trans. Computer Systems. held in conjunction with
ISCA98, Barcelona, Spain, June 1998.

[11] G. Roos. Computation of protein structure with dyana on
a cluster of pcs. Technical report, ETH Zurich, 2000.

[12] M. Snir, S. W. Otto, S. Huss-Lederman, D. W. Walker,
and J. Dongarra.MPI - The complete Reference. MIT
Press, 1997.

[13] P. D. Stout. WAX: A Wide Area Computation System.
Technical report, School of Computer Science, Carnegie
Mellon University, 1994. PhD thesis. Available as Tech-
nical Report CMU-CS94-230.

[14] W. T. Sullivan, D. Werthimer, S. Bowyer, J. Cobb,
D. Gedye, and Anderson D. A new major SETI project
based on Project Serendip data and 100,000 personal
computers. InProc. of the Fifth Intl. Conf. on Bioas-
tronomy., 1997.

[15] M. Taufer, E. Perathoner, A. Cavalli, and T. Caflish,
A. Stricker. Performance Characterization of a Molec-
ular Dynamics Code on PC Clusters. Is there any easy
parallelism in CHARMM? InProc. of IPDPS, IEEE and
ACM International Parallel and Distributed Processing
Symposium, Fort Lauterdale, FL, USA, Apr 15-19 2002.

9

