On the Migration of the Scientific Code Dyana from SMPs to Clusters of
PCs and on to the Grid

Michela Taufet, Thomas Strické; Gérard Roog, Peter Gintert?

1 Department of Computer Sciencé Institute for Molecular Biology and
Biophysics
ETH Zentrum ETH Hoenggerberg
CH-8092 Zurich, Switzerland CH-8092 Zurich, Switzerland
stricker,taufer@inf.ethz.ch guentert@mol.biol.ethz.ch

Abstract 1 Introduction

Dyana is a molecular biology code used in the study Rapid changes in technology lead to ever cheaper and
of infectious prion proteins. Like many other scientific More powerful platforms for high performance comput-
codes, Dyana was migrated successfully from vector su-"9- The computational power and the machine char-
percomputers to a more cost-effective cluster of com- acteristics founq in supercomputers .of yesterday are 'al-
modity PCs. A further migration to a widely distributed "€ady available in high-end workstations today and will
grid computing platform looks very tempting because be available in consumer devices in every household to-

many of these platforms promise the use of nearly freeMOTOW. This trend leads to the vision of a computa-
compute-cycles on the Internet. tional grid comprising millions of computing devices

worldwide, connected by the Internet.
Not all codes are equally suited for all platforms. Even The focus in high performance computing has shifted
embarrassingly parallel codes might require a signifi- from installations with maximal performance to instal-
cant re-engineering effort for a migration from one plat- |ations with the better price-performance ratios. At
form to another. A better understanding of the perfor- the same time, with the rapid expansion of the Inter-
mance characteristics of a code is required before a mi- net, many powerful PCs are networked by some fairly
gration is attempted. good interconnects. In theory, these machines can sup-
ly thousands of Megaflops in compute performance to
omputational scientists, if they are used during their
idle times and a mode of operation to deliver their spare
compute cycles is created. Besides early academic pro-
totypes [13, 14], several companies are developing mid-
dleware, toolkits and business models foidely dis-
tributed computing on the Interngt, 4]. In some cases
a newly proposed business model of “good cause com-
puting” suggests that users donate the spare compute cy-
cles to science.

We demonstrate our method with the molecular biology There exists a fair number of useful computations that
code Dyana. In particular, our general model predicts were once brand-marked as embarrassingly parallel and
that Dyana can efficiently use up to 42000 processors therefore uninteresting. Indeed, the performance char-
with its current workload and is therefore well suited for ~acteristics of those applications are quite boring if they
grid computing on the Internet. are run on high-end supercomputers. Still, those appli-
cations do computations that are highly useful to the ad-
Keywords: performance evaluation and modeling, vancement of science once they can be deployed more
computation-intensive applications, widely distributed widely and executed on ever cheaper resources. Fur-
supercomputing, migration of scientific codes, software thermore, a closer look to some examples may quickly
engineering, grid architectures. reveal that there are quite different levels of embarrass-
ingly parallel and that not all of those codes can be mi-

To address this problem, we present a systematic methocg
to study the viability of a code migration from one plat-
form to another. We construct an analytic performance
model of the application. We use the previous migration
from SMPs to commaodity clusters of PCs to validate and
calibrate the model. Finally, we extrapolate the perfor-
mance of Dyana to new platforms including widely dis-
tributed computing on the grid and we suggest optimiza-
tions in the process of migration.

grated equally well to newer and cheaper platforms. [6]. It calculates three-dimensional protein and nucleic
Code migrations from vectorizable codes to messageacid structures from distance constraints and torsion an-
passing programs require some well-known transforma- gle constraints collected by nuclear magnetic resonance
tions. In most cases, a successful migration involves (NMR) experiments [5]. The computation is based on
some significant re-engineering of the code. The con- simulated annealing driven by the fast torsion angle dy-
trol and data transfer primitives need to be changed from namics (TAD) algorithm [7].

multi-threading with shared memory primitives to calls The simulated annealing is repeated several times, each
for message passing libraries or even back to calls han-ime starting with different random initial values of the
dling TCP/IP streams for widely distributed computing degrees of freedom, the torsion angles. This indepen-
on the Internet. Unfortunately, these transformations are dent generation of many conformers introduces a high
often done without a precise cost-benefit model in mind degree of inherent parallelism into the structure calcula-
and without a prior performance characterization of the tion with Dyana.

code. Dyana is written for a master-slave setting. The master
In this paper, we propose a systematic way to check coordinates the parallel distributionand calculation. The
the viability of a migration from clusters of PCs to a slaves run the simulations and return the results (i.e., the
framework of widely distributed computing well in ad- resulting conformer) to the master that collects and ana-
vance and demonstrate it with the highly parallel molec- lyzes them.

ular biology code, Dyana [6]. Dyana computes three-

dimensional protein and nucleic acid structures by en- 2.1 Task Parallelism in the SMP Version

ergy minimization in a simulated annealing process and

is highly valuable to the investigation of Prion related The original version of Dyana runs on shared-memory
diseases like the Bovine Spongiform Encephalopathy multiprocessors (SMPs). The parallelism in the com-
(BSE), the mad cow disease. The planned use of Dyanaoutation of the conformers has been reached by means
fits the idea of good cause computing and so it could Of multiple independent processes spawned by a UNIX
be a good candidate to exploit free compute resourcesfork() system call. The master process creates the slave
donated by Internet users. processes calling fork() and implicitly sends the data to
For our investigation we rely on the performance data them, according to the standard UNIX semantics for
gathered during a successfully completed migration Process creation. Since no information is exchanged
from SMPs to clusters of commodity PCs [11]. The per- during the computation of conformers, no additional
formance data of those experiments is used to calibrateShared memory data structures are necessary.

a detailed analytical model describing the precise per- Each slave computes exactly one conformer. Once a
formance characteristics of the code (CPU dependencySlave has finished its computation, it sends the con-
memory system usage, /O requirements) for a variety former back to the master and exits. The slaves return
of node architectures and networks, like uni-processor their results to the master through the file system.

and dual-processor Pentium 11l nodes at 400, 800 and The master is informed by the operating system upon
1000 MHz. We also included several different memory the termination of a slave (child-termination signal). Al-
systems (i.e. PC motherboards) and one completely dif-though the master has to know when a slave exits, it does
ferent architecture using a DEC Alpha based cluster with N0t need to know which particular slave has finished.
a dedicated high speed interconnect [3]. Once our per-A counter, which increases upon forking and decreases
formance model is calibrated, it extends to the planned UPON Eceiving a child-termination signal tells the mas-
migration to widely distributed computing on the Inter- ter when a parallel part of the computation is finished.
net. Once all conformer simulations have been completed,
In Section 2 we take a closer look at the Dyana applica- the master gathers the data about protein structures by
tion code and its functions. In Section 3 we discuss the réading the corresponding files and continues with the
migration path and the different mechanisms for con- Sequential execution of a subsequent evaluation part.
trol and data transfers used on the different platforms. AS long as there are more structures to compute, the
In Section 4 we establish and calibrate the performanceMaster spawns slaves. At the same time, the master en-
model used to guide the migration of Dyana. This leads SUres that'the number of slaves does not exceed the num-
to the discussion about viability and the expected perfor- Per of available processors.

mance on the new platforms in Section 5. i i
2.2 Managing Computation Steps and Tasks

. . with INCLAN
2 The Protein Structure Calculation Code
Dyana The Dyana software system provides a collection of
functions implementing the algorithms for NMR struc-
The application code Dyana was written at the Institute ture calculation. The user arranges these functions to
of Molecular Biology and Biophysics of ETH Zurich obtain a sequence of commands that computes a protein

structure from its experimental NMR data. This high | /\/\

degree of flexibility has been achieved by integrating WiELY

INCLAN (INteractive Command LANguage) [5] into o i w1 % F"mcs 777777 Fraewon
Dyana. INCLAN is an interpreted command language, @88 @ ., 3 . ! middeware

activation

offering control logics like if-then-else commands, loop

constructs, ordinary variable assignment and arithmetic oo @ |
operations to control the search for the molecule struc- - !
ture with minimal energy. Therefore, all common strate-
gies for the generation of conformers (work-units or
tasks) can implemented in Dyana.

While the flexibility of INCLAN allows several different
tasking and scheduling models of the computation, we
used for our modeling uses a fairly rigid tasking model.
Each computation phase starts with an initial conformer
structure and generates a series of random variations
that are considered for energy minimization at this step.
Each variation of the conformer is handled by INCLAN
like a work queue in the master.

I
! I

filesystemeals 1 file system calls i file system calls
! I
I

Figure 1. Control and data transfer mechanisms used
in the migration path from SMP machine, to cluster
of PCs and on to a framework for widely distributed

computing. While in the migration we re-engineer
the control mechanisms from fork() calls on SMPs,
to MPI commands on clusters and middleware library
calls on frameworks for widely distributed comput-

ing. We maintain the same data transfer mechanism
(file system calls) for all architectures.

2.3 Characteristics of the SMP Version in the command language INCLAN to MPI primitives
for task activation [12]. In frameworks for widely dis-
The fork() system call used for task creation simplifies tributed computing, the task activation will be delegated
the code implementation, since the entire address spaceo the appropriate middleware primitive using the library
of the master is replicated to the slave. The process oncalls provided for this purpose. The additional synchro-
the slave only lives until its computation completes and nization primitives for the coordination of the initial and
there is no need to reset some state or keep the state ofinal data transfers are handled in a similar manner.

the master and the slaves consistent. To manage the data transfers, we use the file system
On the other hand, forking a process can become an exrga|is provided by the underlying memory mapped files
pensive task unless shared memory with copy on write on SMP machines, by the networked file system NFS for
is used. If we look at the fork() system call as an im- ¢ysters of PCs or by the calls of the toolkit in widely
plicit send command that transmits, the whole address gjstributed computing. Due to the small amount of data
space of a process the potential cost becomes obvioussommunicated, this can be done with a reasonable ef-
Furthermore, the distributed operating systems on clus-ficiency on all platforms considered. We acknowledge
ter nodes do not provide the replication of an entire ad- that there must be an appropriate security concept for
dress space across different machines and the fork() callegch platform. Contiting the access to the slave com-
cannot be used for task creation. Therefore, the originalpu»[ers and the integrity of data transfers is of a lesser
SMP version of Dyana needs some re-engineering to runjnterest to a performance study. Good solutions have
on clusters or widely distributed platforms. been proposed in the past literature and we assume that
the problem is solved in the middleware packages men-
3 Migration of the Code from SMPs to tioned in the introduction[1, 4].
Clusters and to Distributed Platforms For the migration to a widely distributed computing plat-
form, the tasking model of a typical Dyana computation
The migration of a code from one platform to another has to be reviewed critically. To provide the necessary
could be done with a minimal amount of re-engineering. parallelism the generation of new conformers must be
For a migration of Dyana from SMPs to strongly inter- done automatically and span more than one generation
connected cluster of PCs and further on to frameworks Of alternatives. As with all optimization problems, the
for widely distributed computing, we separate the con- Problem of getting trapped in local minima must be ad-
trol mechanism (i.e. the task activation and task syn- dressed carefully. The code needs to be adapted to a
chronization) from the data transfer mechanism (i.e. the proper workstealing paradigm as used in CILK [2].
exchange of the initial molecular state and the computed The job queuing in the master and the work stealing
3D structure at the end). Control and data transfers arescheduler can easily handle different speeds of differ-
adapted separately to the new platform. The optionsent machines and the model can be extended to handle
chosen for each platformin the migration path are shown different classes of machines. For the total execution
in Figure 1. time only the total of compute power remains relevant,
In the migration from an SMP to a cluster, we change provided that the speed of a machine justifies the cost of
the control mechanisms from fork() calls implemented networking it to a grid. Dyana computations are highly

fault tolerant by their nature. Since variations of the con-

formers are generated by a random generator the infre-

guent loss of a task can be tolerated easily.

4 Performance Model of Dyana

o tereatestructureiS the time spent for creating the ran-
dom structure,

e teonfsiml IS the time spent minimizing the violations
of the conformational constraints by simulating an-
nealing.

The purpose of our study is to get an idea whether DyanaSince tcontsim IS the most time consuming and
can run on on a more cost-effective platform in an effi- tcreatestructurelS l€SS than 5% dfjm, we consider:

cient way. To answer this question we design and val-
idate a simple but effective analytical model which lets

us roughly calculate the execution time for different ap- t_ ; .. is given by:

plication parameters, different number of processors and

different platforms.
4.1 Model Design

As outlined in Section 2, the code Dyana simulates and
evaluates the different alternatives of three-dimensional
molecular structures, called conformers. For each of
them, Dyana performs:

e the creation of an initial structure with random val-
ues for the dihedral angles,

e the minimization of violations of the conforma-
tional constraints by simulating annealing using
torsion angle dynamic,

e the evaluation of the three dimensional structure re-
sulted by checking it against spectroscopic data.

For a run ofn conformers omp processors, the total ex-
ecution timefgyana Can be splitinto three terms:

1)

tdyama = tinit + tsim + tcomm
where:

e tinit is the time spent to create and initialize the pa-
rameters needed during the whole simulation,

e tgim is the time used to run the simulations of an-
nealing using torsion angle dynamics,

e tcommiS the communication time during which the
several slaves communicate with the master and
vice versa.

Sincetinit is constant for the whole simulation and irrel-
evant if compared with the other time components, we
ignore its contribution.

The simulation is done in two phases. First, a random
structure is created, then the simulation of annealing
takes place.tsm for n conformers onp processors is
given by:

(2)

tsiml = [B-‘ (tcreate.structure+ tconf_siml)

where:

tsiml & teon f_siml (3
FIOpcont

teonf.sim = —=o>—— (4)
conf_sim Flptspeed

where:

e FIOpcont is the total amount of floating point op-
erations per conformei=10pcont is mostly deter-
mined by the protein structure considered, but it
can also be a code factor and can depend on the
compiler technology. Table 1 reports the amount
of FIOpcont, for both the molecules considered in
our study, the prion hPrP(R220K) and the ER2 pro-
teins, on Pentium and Alpha architectures. The dif-
ferent number of floating point operations on the
two platforms is related to the different compilers
used and the different standard libraries called for
transcendal functions.

Protein | Architecture Compiler F1Opcont

hPrpP Pentium PGI Compiler | 6.5 GFIOp
hPrP Alpha DEC Compiler| 5.3 GFIOp
ER2 Pentium PGI Compiler | 1.6 GFIOp
ER2 Alpha DEC Compiler| 1.4 GFIOp

Table 1. Total number of observed floating point op-
erations (FlOpconf) per conformer simulation for a
prion hPrP and a ER2 on Pentium and Alpha plat-
forms. The different number of floating point op-
eration on the two different platforms is due to the
different compilers.

o FIPtspeedis the amount of floating point operations
per second. It depends on architecture parameters
like CPU rate and memory characteristics.

In our model FIPtspeeqis approximated as:

CPU_clockrate

FlPtspeed= ——————
fspeed clocksper_FIOp

(5)

In Formula 5, theCPU_clockrate is the frequency
of the CPU. The clocks per floating point operation,
clocksper.FIOp, are further related to the CPU fre-
guency and the memory characteristics:

clocksperFIOp = f(CPU_speed

memorycharacteristic$(6)

The CPU is characterized simply by its clock speed. De-
spite all architectural differences like super-scalar ex-
ecution, different handling of hazards and dependen-
cies interfering with the pipelines, we observed that on
most current microprocessors one floating point instruc-
tion can be successfully completed for every clock cy-
cle. To characterize the memory system, we use the Ex-
tended Copy Transfer Characterization (ECT) [10, 9].
Our model considers the average amount of cycles that
are spent by one floating point operation when it has to The time for the whole communication becomes:

e the number of processorg,

e the bandwidth,bandwidthastes that the master
can sustain serving many slaves and

e the bandwidthpandwidthy,ye that a single slave
handle.
SiZ&ata P - Siz@ata
bandwidth)aye bandwid'[hn‘-,lster(8

tcommeont = ma)‘(

fetch its data from memory. The total number of cy-

cles used in an application run is estimated based on a

detailed memory characterization (MBytes per second)
taken from the ECT micro-benchmarks. We consider
two different kind of memory accesses: cqutbus and
non-contiguous/stridedccess. We calculate the coeffi-
cients of the approximation by a linear regression model:

(7)

In Formula 7,a is the amount of cycles needed for a
floating point operation without any memoagcessf3

is the amount of cycles needed for a floating point op-
eration which has to load a word from memory continu-
ously, whiley is the amount of cycles needed for a float-
ing point operation which loads a word from memory
using strided access. Table 2 shows the values 8fy
estimated using the ECT model for the several platforms

clocks per FIOp=aa +bp+cy

considered.

CPU Type a B %
CPUs CPUs
1 2 1 2

PentiumIll933MHz| 1 | 13 18| 33 75

PentiumIll800MHz | 1 | 17 21| 26 50

PentiumIl400MHz | 1 | 11 14|29 40

DEC Alpha 667 MHz| 1 7 7134 34

Table 2. Values of O, 3 and Y estimated using the
ECT memory system model for Pentium and Alpha
platforms.

The parameters, b and ¢ characterize Dyana and are
chosen using the least-squares criterion [8] for all differ-
ent machines, molecular structures and runs of Dyana.
So on averagea represents the amount of operations
which do not need any memory loddlis the number of
floating point operations which access memory blocks
continuously, whilec is the amount whiclaccess the
memory non-continuously.

At the end of each conformer simulation, the slaves
send the computed three-dimensional molecular struc-
ture back to the master writing the data using file system
calls and remain ready for a new simulation. In case of
symmetrical networks, the time for the communication
between master and slavégmmcont, depends on:

o the size of the datajzeq 44, that is exchanged,

n

tcommeont =
1
SIZQata

W max bandwidthye

P SiZQata
bandWidthhaster (9)

On strongly interconnected cluster platforms which nor-
mally consists of a small number of nodes connected
and a large bandwidth (1000BaseT), the communication
does not play any relevant role for the overall perfor-
mance. On frameworks for widely distributed comput-
ing, it is either the available bandwidth of the slaves or
the bandwidth of the master which limits the scalabil-
ity of a parallel computation. The analytical model be-

-

max(

tcomm = {

n

[_

p

n FIOpconf

CPU_cIocKrate(aa +bB+oy) +

SiZQata P SiZQata))
bandwidth)ae bandwidthnaster
(10)

The model can easily be adapted for asymmetric net-
works as found in home-computers connected to the In-
ternet by asymmetric ADSL or CableTV links.

dyana

4.2 Model Validation

Since we have a running implementation of Dyana for
SMPs and clusters, we can use application measure-
ments as the most reliable way to validate our analytical
model. We compare the execution time measured with
the application behavior computed using the analytical
model for a few selected scenarios and for different kind
of molecular structures.

Figure 2a and Figure 2b compare respectively the execu-
tion time versus the estimated time for the Prion protein
on a Pentium Il cluster (400MHz) with one active pro-
cessor per node (single processor) and two active pro-
cessors per node (dual processors). Figure 3a and Fig-
ure 3b display the same comparisons with the ER2 pro-
tein. The graphs point out a good level adcuracy of

the model. Figure 4 compares the execution time versus
the estimated time for the Prion on a cluster of 16 Alpha
(667Mzh) dual processors.

Measured time vs. estimated time on Pentium Il (400 MHz) Measured time vs. estimated time on Pentium Il (400 MHz)

(PRION, 128 conformers, single processor) (PRION, 128 conformers, dual processors)
10000 10000
9000 9000
8000 8000
7000 7000
—~ 6000 —~ 6000
© Q
i)
~ 5000 ~ 5000
@ [}
£ E
= 4000 = 4000
3000 3000
2000 2000
1000 1000
0 0
1 2 4 8 16 2 4 8 16 32
number of slaves number of slaves
(@) (b)
. measured time . estimated time

Figure 2. Comparison of the measured execution time to the modeled execution time of Dyana for a Prion protein on a
cluster of dual Pentium Il (400MHz). A different number of slaves with one active processor per node (a) and with two
active processors per node (b) is considered.

Measured time vs. estimated time on Pentium Il (400 MHz) Measured time vs. estimated time on Pentium Il (400 MHz)
(ER2, 128 conformers, single processor) (ER2, 128 conformers, dual processors)
2500 2500

2000

~1500

time (sec

1000

500

1 2 4 8 16 2 4 8 16 32
number of slaves number of slaves
(@ (b)
. measured time . estimated time

Figure 3. Comparison of the measured execution time to the modeled execution time of Dyana for a ER2 protein on a
cluster of dual Pentium Il (400MHz). A different number of slaves with one active processor per node (a) and with two
active processors per node (b) is considered.

5 Performance Prediction of Dyana on e a strongly interconnected high-end cluster whose
Different Platforms nodes, all 1 GHz Pentium Il processors, are
interconnected by high bandwidth networks

In the past sections we established and calibrated an an- ~ (1000BaseT).
alytical performance model for Dyana based on the mi-

gration from SMP platforms to cluster of PCs. In this

section we will use our model to extrapolate the perfor-

mance of Dyana to different compute platforms at both

ends of the performance spectrum:
In Dyana, the master performs only short calculations

e a framework for widely distributed computing when it receives a request by a slave. Theant of the
(cluster of 400 MHz Pentium Celeron Processors) data exchanged between master and slave depends on
interconnected by a highly heterogeneous network the molecule but in general it is not large. For a typical
connecting home users with standard modems to aPrion protein, the communication size, including all the
master with a high bandwidth connection, synchronization signals, is less than 20 KBytes.

Measured time vs. estimated time on Alpha Cluster (667 MHz)

(PRION, 128 conformers, dual processors) 3 Seconds to be Served
2500

t f= __S7@aa__
commeont = handwidthyaye

According to our prediction for the case of a slave with

A2 3sec (13)

2000+

51500 a low-cost node (Pentium Il 400 MHz), the computation
§ of a conformer required an average 85 seconds. During
= 1000 this time, the master can serve other requests and the

duty cycle of Dyana becomes:

500

t .
duty.cycle= —<ent=iml 8528 (14)

0 tcommeconft 3
2 4 8 16 32

number of slaves

The total number of slaves per master that can be served

W reesuredime] estmated ime on this platform is related to the maximum number of
slaves which can be served at the same tipigx, and
Figure 4. Comparison of the measured execution time the duty cycle of the applicationluty.cycle In a situ-
to the modeled execution time of Dyana for the Prion ation of perfect load balancing, the maximal number of
protein on a cluster of DEC Alpha (667MHz) for differ- slaves becomes approximately:
ent number of slaves with two active processors per

node Pmax- duty.cycle= 1500- 28~ 42000 (15)

For a good scalability beyond this point, the master must

5.1 Performance Prediction of Dyana in be replicated as well adding a second level of paralleliza-

Widely Distributed Computing tion. Multiple masters can be used to do the communi-
cation phases and prevent related bottlenecks on compu-

Although Dyana does not require much computation of tation involving more computers.

the master when it receives a service request, this task!he parameter values observed in Dyana and similar
may become a bottleneck as soon as the master can ndtodes indicate that the typical network latency of a few

cope with an exceptionally large amount of requests it hundreds milliseconds in a grid is far less than the com-
receives. This is not an unrealistic scenario whesut ~ Putation time of a task and even an order of magnitude
sands of computers on the Internet become involved.ess than the total communication time required for the
With our simple model and the profiling data of the ap- €xecution of the task. The computations are therefore
plication on clusters, we can try to estimate this cross- Communication bandwidth and not latency limited.

over pointwhen a master can no longer serve the amount~igure 5a shows the total time for the computation of

of requests received wibut causing a limitation in per- 256 conformers while Figure 5b shows the prediction

formance. of the conformer number per hour for the Prion protein

On frameworks for widely distributed computing, ©N @ cluster of Pentium I .400 MHz Celeron. A few'
the master normally resides on a strongly intercon- hundred processors are still a small number for use in

nected platform on the back-bone using fully switched widely Qistributed computing and for the final paper we
100BaseT or 1000BaseT Ethernet, while the slaves re-Would like to gather more numbers and extrapolate our
main connected to this framework by voice modems, Predictions more aggressively to 100°000 nodes.

ISDN or ADSL connection, at a speed of just

7 KBytes/sec (worst case). With these numbers and our

. SN 5.2 Performance Prediction of Dyana on
model, we can estimate the communication time:

Strongly Interconnected High-End Clus-

tomm= [2 max SiZ@ata P - SiZQaia ters

eomm bandwidthyaye bandwidthnasu(ar
11

For the verification of the model we also consider new
With communication time and duty cycle of the master platforms with higher performance than the current Be-

(master computation time over slave computation time), OWulf clusters. On a strongly interconnected high-end
we can easily derive the maximal number of slaves a cluster, 'the communication rate reqwremer)ts qf Dyana
single master can handle. are easily met. Therefore, the communication time can

be assumed zero. Figure 6a shows the total time for
bandwidthnaster the computation of 256 conformers for a strongly in-
‘bandwidthyaye %1500 (12) " terconnected high-end cluster whose nodes, Pentium lIl

1 GHz, are interconnected by high bandwidth networks,
In the scenario in which the bandwidth of the slaves lim- while Figure 6b show the prediction of the humber of
its the communication, a request needs approximatelyconformers per hour.

P> Pmax=

Predicted time on a framework for widely Predicted number of conformers per hour on a

distributed computing framework for widely distributed computing
(PRION, 256 conformers, 400 MHz) (PRION, 400 MHz)
24000 30000
20000 = 10000
o
=4
16000 @
— [
3 £
3
< 12000 £ 1000
E 8
8000 >
[
Qo
£
4000 2 100
0 30
1 2 4 8 16 32 64 128 256 1 2 4 8 16 32 64 128 256
number of slaves number of slaves
(@ (b)
Il 00 mHz Bl oz

Figure 5. Predicted execution time of Dyana for the computation of 256 conformers (a) and predicted compute rate in
conformers per hour (b) of Dyana for a Prion protein on a framework for widely distributed computing. The predictions
are computed by our analytical model from basic performance characteristics of the new target platform.

Predicted time on a strongly Predicted number of conformers per hour on a
interconnected high-end cluster strongly interconnected high-end cluster
(PRION, 256 conformers, 1 GHz) (PRION, 1 GHz)
25000 100000
20000 3
2
£ 10000
3 15000 £
g K]
~ c
g 3
£ 10000 $
5 1000
Qo
5000 E
0 — T T T 100
1 2 4 8 16 32 64 128 256 1 2 4 8 16 32 64 128 256
number of slaves number of slaves
(a) (b)
B e B e

Figure 6. Predicted execution time of Dyana for the computation of 256 conformers (a) and predicted compute rate in
conformers per hour (b) of Dyana for a Prion protein on a strongly interconnected high-end cluster. The predictions
are computed by our analytical model from basic performance characteristics of the new target platform.

6 Extending our Approach to other Codes very similar. So the usage of the floating point units
and Future Work and of the memory system in CHARMM and DYANA
are very alike. The total number of floating point op-
An entire class of scientific codes (OPAL, CHARMM, erations per work-unit is fairly different, but can easily
GAMESS, AMBER) can distribute their work-units be determined by benchmarking the sequential version
among different processors in a cluster or on the grid set-of the code. The amount of communication to start and
ting. Due to a similar master-slave setting, some compu-complete a work-unit can be characterize in the param-
tation intensive phases are followed by a communication eters used in our model. Therefore, the same model can
phase. be used to characterize the code and predict the perfor-
In addition to Dyana, we did also look at CHARMM mance of CHARMM for grid environments. A precise
(Chemistry at HARvard Macromolecular Mechanics). characterization of CHARMM is given in [15].
The resource usage of CHARMM at the architectural
and the operating system level are highly similar to
Dyana. Therefore, the modeling of CHARMM can be Despite the highly positive outlook given by our pre-
achieved by the set of formulas given in this paper for diction for Dyana on a grid platform, we recently fo-
modeling the performance of Dyana. The application cused our attention and our engineering capacities to the
parameters that determine the clock-per-floating-point- migration of CHARMM to some well known grid plat-
operation (i.e. a specialization of better known CPI) are forms for highly distributed computation [1, 4].

7 Conclusion

A successful migration of the molecular dynamics code
Dyana from SMP workstations to a more cost-effective
cluster of commaodity PCs drastically increases the com-
pute resources available to biologists for this kind of cal-
culations. Because of a clean separation of control and
data transfer, the amount of code re-engineering needed
for the migration is kept at a minimum. While we read-
ily adapt the control transfer mechanism to the best task-
ing paradigm for a particular platform, we left all bulk
data transfers with file system calls, using the appropri-
ate underlying mechanism of shared memory in SMPs,
NFS in clusters or the corresponding toolkit functions in
grid computing environments. This programming short-
cut is properly justified by the small impact of the data
transfers on the overall performance of Dyana.

To further increase the number of computers available
to Dyana, we study the viability of a next migration step
from clusters to some newly developed frameworks for
widely distributed grid computing on the Internet. The
effectiveness of such a migration is studied with an ana-
lytic performance model of Dyana. The model predicts
performance on a broad range of different computing
platforms including SMP servers, clusters of PCs and
novel infrastructures for widely distributed computing
on the grid. The model incorporates application param-
eters like protein size and machine parameters like CPU
clock frequency, memory system type or network speed
and the degree of parallelism used. The parameters are
properly fitted to different experiments involving 1 to 32
processors as 32bit Intel Pentium Ills and 64bit Compaq
Alphas with clock rates between 400 MHz to 1 GHz.
The use of the model is calibrated and validated during
a previous migration from SMPs to cluster of PCs. The
model reaches an excellent fit with a high accuracy in

[1

References

[1] D. Anderson and et al. United Devices - Building
the worlds largest computer, one computer at a time.
http://www.ud.com/.

[2] R. Blumofe, C. Joerg, B. Kuszmaul, C. Leisserson,

K. Randall, and Y. Zhou. Cilk: An efficient niti

threaded runtime system. Rroc. 5th ACM Symp. on

Principles and Practice of Parallel Prog. (PPoPR)ages

207-216, Santa Barbara, July 1995. ACM.

S. Brauss, M. Lienhard, J. Nemecek, A. Gunzingeaf N”
M., M. Frey, M. Heimlicher, A. Huber, P. Mler, and
R. Paul. An Efficient Communication Architecture for
Commodity Supercomputers. Rroceeding of the SC99
ConferencePortland, Oregon, USA, Nov 13-19 1999.

[4] A.Chienand et. al. Entropia - High Performance Internet
Computing. http://www.entropia.com.

P. Glintert. Structure calculation of biological macro-
molecules from NMR data. Quart. Rev. Biophys.
31:145-237,1998.

P. Glintert, C. Mumenthaler, and K. Wrich. Torsion
angle dynamics for NMR structure calculation with the
new program Dyanal. Mol. Biol, 273:283—-298, 1997.

[7] A. Jain, N. Vaidehi, and G. Rodriguez. A fast recursive
algorithm for molecular dynamics simulatiod. Comp.
Phys, 106:258—-268, 1993.

R. Jain.The Art of Computer Systems Performance Anal-
ysis Wiley Professional Computing, 1996.

Ch. Kurmann and T. Stricker.
Extended Copy Transfer
http://www.cs.inf.ethz.ch/CoPs/ECT/.

Ch. Kurmann and T. Stricker. Characterizing memory

system performance for local and remote accesses in
high-end SMPs, low-end SMPs and clusters of SMPs.
In 7th Workshop on Scalable Memory Multiprocessors

ACM Trans. Computer Systems. held in conjunction with
ISCA98 Barcelona, Spain, June 1998.

(3]

5]

[6]

(8]

ECT
Characterization.

9]

0]

its predictions on average and a worst case of just of[11] G.Roos. Computation of protein structure with dyana on

19% deviation from experimental data. The per proces-

a cluster of pcs. Technical report, ETH Zurich, 2000.

sor performance range considered is 82 MFlop/s to 180[12] M. Snir, S. W. Otto, S. Huss-Lederman, D. W. Walker,

MFlop/s per processor. The aggregate performance in
our most parallel system reaches up to 4.9 GFlop/s.

After calibration, we use our performance model to ex- [13]

trapolate the application runs to a widely distributed
computing infrastructure incorporating thousands of
processors on the Internet and are predicting excellent

scalability up to approximately 42000 processors. At [14]

this number of slaves the communication to the master
becomes the bottleneck. Replication of the master in a
multilevel hierarchical setup can resolve this.

The performance model of this study indicates that

Dyana can be successfully migrated to frameworks for [15]

widely distributed systems on the Internet and is, there-
fore, well suitable for grid computing. Since Dyana is

crucial to the ongoing research of Prion infections like
BSE, the code would be an ideal candidate for a “good
cause” computing campaign.

and J. DongarraMPI - The complete Referenc®IT
Press, 1997.

P. D. Stout. WAX: A Wide Area Computation System.
Technical report, School of Computer Science, Carnegie
Mellon University, 1994. PhD thesis. Available as Tech-
nical Report CMU-CS94-230.

W. T. Sullivan, D. Werthimer, S. Bowyer, J. Cobb,
D. Gedye, and Anderson D. A new major SETI project
based on Project Serendip data and 100,000 personal
computers. InProc. of the Fifth Intl. Conf. on Bioas-
tronomy, 1997.

M. Taufer, E. Perathoner, A. Cdliaand T. Caflish,

A. Stricker. Performance Characterization of a Molec-
ular Dynamics Code on PC Clusters. Is there any easy
parallelism in CHARMM? InProc. of IPDPS, IEEE and
ACM International Parallel and Distributed Processing
Symposiuntort Lauterdale, FL, USA, Apr 15-19 2002.

